12/07/2020

Graph Homomorphism Convolution

Hoang Nguyen, Takanori Maehara

Keywords: Supervised Learning

Abstract: In this paper, we study the graph classification problem from the graph homomorphism perspective. We consider the homomorphisms from $F$ to $G$, where $G$ is a graph of interest (e.g. molecules or social networks) and $F$ belongs to some family of graphs (e.g. paths or non-isomorphic trees). We proved that graph homomorphism numbers provide a natural universally invariant embedding maps which can be used for graph classifications. We also discovered that the graph homomorphism method unifies connectivity preserving methods. In practice, by observing that graph classification datasets often have bounded treewidths, we show that our method is not only competitive in classification accuracy but also run much faster than other state-of-the-art. Finally, based on our theoretical analysis, we propose the Graph Homomorphism Convolution module which has promising performance in the graph classification task.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers