04/07/2020

Multi-Cell Compositional LSTM for NER Domain Adaptation

Chen Jia, Yue Zhang

Keywords: NER Adaptation, Cross-domain NER, multi-task learning, cross-domain transfer

Abstract: Cross-domain NER is a challenging yet practical problem. Entity mentions can be highly different across domains. However, the correlations between entity types can be relatively more stable across domains. We investigate a multi-cell compositional LSTM structure for multi-task learning, modeling each entity type using a separate cell state. With the help of entity typed units, cross-domain knowledge transfer can be made in an entity type level. Theoretically, the resulting distinct feature distributions for each entity type make it more powerful for cross-domain transfer. Empirically, experiments on four few-shot and zero-shot datasets show our method significantly outperforms a series of multi-task learning methods and achieves the best results.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers