06/12/2021

Directed Probabilistic Watershed

Enrique Fita Sanmartin, Sebastian Damrich, Fred Hamprecht

Keywords: graph learning, semi-supervised learning

Abstract: The Probabilistic Watershed is a semi-supervised learning algorithm applied on undirected graphs. Given a set of labeled nodes (seeds), it defines a Gibbs probability distribution over all possible spanning forests disconnecting the seeds. It calculates, for every node, the probability of sampling a forest connecting a certain seed with the considered node. We propose the "Directed Probabilistic Watershed", an extension of the Probabilistic Watershed algorithm to directed graphs. Building on the Probabilistic Watershed, we apply the Matrix Tree Theorem for directed graphs and define a Gibbs probability distribution over all incoming directed forests rooted at the seeds. Similar to the undirected case, this turns out to be equivalent to the Directed Random Walker. Furthermore, we show that in the limit case in which the Gibbs distribution has infinitely low temperature, the labeling of the Directed Probabilistic Watershed is equal to the one induced by the incoming directed forest of minimum cost. Finally, for illustration, we compare the empirical performance of the proposed method with other semi-supervised segmentation methods for directed graphs.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers

 12:14