19/08/2021

On the Parameterized Complexity of Polytree Learning

Niels Grüttemeier, Christian Komusiewicz, Nils Morawietz

Keywords: Uncertainty in AI, Bayesian Networks, Combinatorial Search and Optimisation

Abstract: A Bayesian network is a directed acyclic graph that represents statistical dependencies between variables of a joint probability distribution. A fundamental task in data science is to learn a Bayesian network from observed data. Polytree Learning is the problem of learning an optimal Bayesian network that fulfills the additional property that its underlying undirected graph is a forest. In this work, we revisit the complexity of Polytree Learning. We show that Polytree Learning can be solved in single-exponential FPT time for the number of variables. Moreover, we consider the influence of d, the number of variables that might receive a nonempty parent set in the final DAG on the complexity of Polytree Learning. We show that Polytree Learning is presumably not fixed-parameter tractable for d, unlike Bayesian network learning which is fixed-parameter tractable for d. Finally, we show that if d and the maximum parent set size are bounded, then we can obtain efficient algorithms.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers