09/07/2020

Estimation and Inference with Trees and Forests in High Dimensions

Vasilis Syrgkanis, Emmanouil Zampetakis

Keywords: High-dimensional statistics, Excess risk bounds and generalization error bounds, Regression

Abstract: We analyze the finite sample mean squared error (MSE) performance of regression trees and forests in the high dimensional regime with binary features, under a sparsity constraint. We prove that if only $r$ of the $d$ features are relevant for the mean outcome function, then shallow trees built greedily via the CART empirical MSE criterion achieve MSE rates that depend only logarithmically on the ambient dimension $d$. We prove upper bounds, whose exact dependence on the number relevant variables $r$ depends on the correlation among the features and on the degree of relevance. For strongly relevant features, we also show that fully grown honest forests achieve fast MSE rates and their predictions are also asymptotically normal, enabling asymptotically valid inference that adapts to the sparsity of the regression function.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLT 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers