06/12/2020

Improved Variational Bayesian Phylogenetic Inference with Normalizing Flows

Cheng Zhang

Keywords:

Abstract: Variational Bayesian phylogenetic inference (VBPI) provides a promising general variational framework for efficient estimation of phylogenetic posteriors. However, the current diagonal Lognormal branch length approximation would significantly restrict the quality of the approximating distributions. In this paper, we propose a new type of VBPI, VBPI-NF, as a first step to empower phylogenetic posterior estimation with deep learning techniques. By handling the non-Euclidean branch length space of phylogenetic models with carefully designed permutation equivariant transformations, VBPI-NF uses normalizing flows to provide a rich family of flexible branch length distributions that generalize across different tree topologies. We show that VBPI-NF significantly improves upon the vanilla VBPI on a benchmark of challenging real data Bayesian phylogenetic inference problems. Further investigation also reveals that the structured parameterization in those permutation equivariant transformations can provide additional amortization benefit.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers