12/07/2020

Thompson Sampling via Local Uncertainty

Zhendong Wang, Mingyuan Zhou

Keywords: Probabilistic Inference - Models and Probabilistic Programming

Abstract: Thompson sampling is an efficient algorithm for sequential decision making, which exploits the posterior uncertainty to address the exploration-exploitation dilemma. There has been significant recent interest in integrating Bayesian neural networks into Thompson sampling. Most of these methods rely on global variable uncertainty for exploration. In this paper, we propose a new probabilistic modeling framework for Thompson sampling, where local latent variable uncertainty is used to sample the mean reward. Variational inference is used to approximate the posterior of the local variable, and semi-implicit structure is further introduced to enhance its expressiveness. Our experimental results on eight contextual bandits benchmark datasets show that Thompson sampling guided by local uncertainty achieves state-of-the-art performance while having low computational complexity.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers