19/10/2020

Optimal end-biased histograms for hierarchical data

Rachel Behar, Sara Cohen

Keywords: hierarchical data, end-biased, histograms

Abstract: We focus on summarizing hierarchical data by adapting the well-known notion of end biased-histograms to trees. Over relational data, such histograms have been well-studied, as they have a good balance between accuracy and space requirements. Extending histograms to tree data is a non-trivial problem, due to the need to preserve and leverage structure in the output. We develop a fast greedy algorithm, and a polynomial algorithm that finds provably optimal hierarchical end-biased histograms. Preliminary experimentation demonstrates that our histograms work well in practice.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3340531.3417449#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CIKM 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers