13/04/2021

Nonparametric variable screening with optimal decision stumps

Jason Klusowski, Peter Tian

Keywords:

Abstract: Decision trees and their ensembles are endowed with a rich set of diagnostic tools for ranking and screening variables in a predictive model. Despite the widespread use of tree based variable importance measures, pinning down their theoretical properties has been challenging and therefore largely unexplored. To address this gap between theory and practice, we derive finite sample performance guarantees for variable selection in nonparametric models using a single-level CART decision tree (a decision stump). Under standard operating assumptions in variable screening literature, we find that the marginal signal strength of each variable and ambient dimensionality can be considerably weaker and higher, respectively, than state-of-the-art nonparametric variable selection methods. Furthermore, unlike previous marginal screening methods that estimate each marginal projection via a truncated basis expansion, the fitted model used here is a simple, parsimonious decision stump, thereby eliminating the need for tuning the number of basis terms. Thus, surprisingly, even though decision stumps are highly inaccurate for estimation purposes, they can still be used to perform consistent model selection.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers