26/08/2020

Ordering-Based Causal Structure Learning in the Presence of Latent Variables

Daniel Bernstein, Basil Saeed, Chandler Squires, Caroline Uhler

Keywords:

Abstract: We consider the task of learning a causal graph in the presence of latent confounders given i.i.d.samples from the model. While current algorithms for causal structure discovery in the presence of latent confounders are constraint-based, we here propose a hybrid approach. We prove that under assumptions weaker than faithfulness, any sparsest independence map (IMAP) of the distribution belongs to the Markov equivalence class of the true model. This motivates the Sparsest Poset formulation - that posets can be mapped to minimal IMAPs of the true model such that the sparsest of these IMAPs is Markov equivalent to the true model. Motivated by this result, we propose a greedy algorithm over the space of posets for causal structure discovery in the presence of latent confounders and compare its performance to the current state-of-the-art algorithms FCI and FCI+ on synthetic data.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers