08/12/2020

Joint Learning of the Graph and the Data Representation for Graph-Based Semi-Supervised Learning

Mariana Vargas-Vieyra, Aurélien Bellet, Pascal Denis

Keywords:

Abstract: Graph-based semi-supervised learning is appealing when labels are scarce but large amounts of unlabeled data are available. These methods typically use a heuristic strategy to construct the graph based on some fixed data representation, independently of the available labels. In this pa- per, we propose to jointly learn a data representation and a graph from both labeled and unlabeled data such that (i) the learned representation indirectly encodes the label information injected into the graph, and (ii) the graph provides a smooth topology with respect to the transformed data. Plugging the resulting graph and representation into existing graph-based semi-supervised learn- ing algorithms like label spreading and graph convolutional networks, we show that our approach outperforms standard graph construction methods on both synthetic data and real datasets.

The video of this talk cannot be embedded. You can watch it here:
https://underline.io/lecture/6486-joint-learning-of-the-graph-and-the-data-representation-for-graph-based-semi-supervised-learning
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLING Workshops 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers