08/07/2020

On the complexity of zero gap MIP*

Hamoon Mousavi, Seyed Sajjad Nezhadi and Henry Yuen

Keywords: Quantum Complexity, Multiprover Interactive Proofs, Computability Theory

Abstract: The class MIP^* is the set of languages decidable by multiprover interactive proofs with quantum entangled provers. It was recently shown by Ji, Natarajan, Vidick, Wright and Yuen that MIP^* is equal to RE, the set of recursively enumerable languages. In particular this shows that the complexity of approximating the quantum value of a non-local game G is equivalent to the complexity of the Halting problem. In this paper we investigate the complexity of deciding whether the quantum value of a non-local game G is exactly 1. This problem corresponds to a complexity class that we call zero gap MIP^*, denoted by MIP₀^*, where there is no promise gap between the verifier’s acceptance probabilities in the YES and NO cases. We prove that MIP₀^* extends beyond the first level of the arithmetical hierarchy (which includes RE and its complement coRE), and in fact is equal to Π₂⁰, the class of languages that can be decided by quantified formulas of the form ∀ y ∃ z R(x,y,z). Combined with the previously known result that MIP₀^{co} (the commuting operator variant of MIP₀^*) is equal to coRE, our result further highlights the fascinating connection between various models of quantum multiprover interactive proofs and different classes in computability theory.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICALP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers