08/07/2020

Descriptive complexity of real computation and probabilistic independence logic

Miika Hannula, Juha Kontinen, Jan Van den Bussche and Jonni Virtema

Keywords: real arithmetic, Blum-Shub-Smale machines, independence logic, team semantics, descriptive complexity

Abstract: We introduce a novel variant of BSS machines called Separate Branching BSS machines (S-BSS in short) and develop a Fagin-type logical characterisation for languages decidable in nondeterministic polynomial time by S-BSS machines. We show that NP on S-BSS machines is strictly included in NP on BSS machines and that every NP language on S-BSS machines is a countable disjoint union of closed sets in the usual topology of Rn. Moreover, we establish that on Boolean inputs NP on S-BSS machines without real constants characterises a natural fragment of the complexity class ∃R (a class of problems polynomial time reducible to the true existential theory of the reals) and hence lies between NP and PSPACE. Finally we apply our results to determine the data complexity of probabilistic independence logic.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICALP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers