02/02/2021

Network Satisfaction for Symmetric Relation Algebras with a Flexible Atom

Manuel Bodirsky, Simon Knäuer

Keywords:

Abstract: Robin Hirsch posed in 1996 the Really Big Complexity Problem: classify the computational complexity of the network satisfaction problem for all finite relation algebras A. We provide a complete classification for the case that A is symmetric and has a flexible atom; the problem is in this case NP-complete or in P. If a finite integral relation algebra has a flexible atom, then it has a normal representation B. We can then study the computational complexity of the network satisfaction problem of A using the universal-algebraic approach, via an analysis of the polymorphisms of B. We also use a Ramsey-type result of Nešetřil and Rödl and a complexity dichotomy result of Bulatov for conservative finite-domain constraint satisfaction problems.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948800
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers