08/07/2020

Weakly-unambiguous Parikh automata and their link to holonomic series

Alin Bostan, Arnaud Carayol, Florent Koechlin and Cyril Nicaud

Keywords: generating series, holonomicity, ambiguity, reversal bounded counter machine, Parikh automata

Abstract: We investigate the connection between properties of formal languages and properties of their generating series, with a focus on the class of holonomic power series. We first prove a strong version of a conjecture by Castiglione and Massazza: weakly-unambiguous Parikh automata are equivalent to unambiguous two-way reversal bounded counter machines, and their multivariate generating series are holonomic. We then show that the converse is not true: we construct a language whose generating series is algebraic (thus holonomic), but which is inherently weakly-ambiguous as a Parikh automata language. Finally, we prove an effective decidability result for the inclusion problem for weakly-unambiguous Parikh automata, and provide an upper-bound on its complexity.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICALP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers