18/07/2021

Explanations for Monotonic Classifiers.

Joao Marques-Silva, Thomas Gerspacher, Martin Cooper, Alexey Ignatiev, Nina Narodytska

Keywords: Social Aspects of Machine Learning, Fairness, Accountability, and Transparency

Abstract: In many classification tasks there is a requirement of monotonicity. Concretely, if all else remains constant, increasing (resp.~decreasing) the value of one or more features must not decrease (resp.~increase) the value of the prediction. Despite comprehensive efforts on learning monotonic classifiers, dedicated approaches for explaining monotonic classifiers are scarce and classifier-specific. This paper describes novel algorithms for the computation of one formal explanation of a (black-box) monotonic classifier. These novel algorithms are polynomial (indeed linear) in the run time complexity of the classifier. Furthermore, the paper presents a practically efficient model-agnostic algorithm for enumerating formal explanations.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers