22/06/2020

Decision list compression by mild random restrictions

Shachar Lovett, Kewen Wu, Jiapeng Zhang

Keywords: DNF sparsification, Decision lists, switching lemma

Abstract: A decision list is an ordered list of rules. Each rule is specified by a term, which is a conjunction of literals, and a value. Given an input, the output of a decision list is the value corresponding to the first rule whose term is satisfied by the input. Decision lists generalize both CNFs and DNFs, and have been studied both in complexity theory and in learning theory. The size of a decision list is the number of rules, and its width is the maximal number of variables in a term. We prove that decision lists of small width can always be approximated by decision lists of small size, where we obtain sharp bounds. This in particular resolves a conjecture of Gopalan, Meka and Reingold (Computational Complexity, 2013) on DNF sparsification. An ingredient in our proof is a new random restriction lemma, which allows to analyze how DNFs (and more generally, decision lists) simplify if a small fraction of the variables are fixed. This is in contrast to the more commonly used switching lemma, which requires most of the variables to be fixed.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at STOC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers