08/07/2020

Universal equivalence and majority of probabilistic programs over finite fields

Gilles Barthe, Charlie Jacomme and Steve Kremer

Keywords: finite fields, probabilistic programs, program equivalence, decidability and complexity

Abstract: We study decidability problems for equivalence of probabilistic programs, for a core probabilistic programming language over finite fields of fixed characteristic. The programming language supports uniform sampling, addition, multiplication and conditionals and thus is sufficiently expressive to encode boolean and arithmetic circuits. We consider two variants of equivalence: the first one considers an interpretation over the finite field Fq, while the second one, which we call universal equivalence, verifies equivalence over all extensions Fqk of Fq. The universal variant typically arises in provable cryptography when one wishes to prove equivalence for any length of bitstrings, i.e., elements of F2k for any k. While the first problem is obviously decidable, we establish its exact complexity which lies in the counting hierarchy. To show decidability, and a doubly exponential upper bound, of the universal variant we rely on results from algorithmic number theory and the possibility to compare local zeta functions associated to given polynomials. Finally we study several variants of the equivalence problem, including a problem we call majority, motivated by differential privacy.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICALP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers