22/06/2020

A polynomial lower bound on adaptive complexity of submodular maximization

Wenzheng Li, Paul Liu, Jan Vondrák

Keywords: submodular, optimization, symmetry gap, lower bound, adaptive model

Abstract: In large-data applications, it is desirable to design algorithms with a high degree of parallelization. In the context of submodular optimization, adaptive complexity has become a widely-used measure of an algorithm’s “sequentiality”. Algorithms in the adaptive model proceed in rounds, and can issue polynomially many queries to a function f in each round. The queries in each round must be independent, produced by a computation that depends only on query results obtained in previous rounds. In this work, we examine two fundamental variants of submodular maximization in the adaptive complexity model: cardinality-constrained monotone maximization, and unconstrained non-mono-tone maximization. Our main result is that an r-round algorithm for cardinality-constrained monotone maximization cannot achieve an approximation factor better than 1 − 1/e − Ω(min 1/r, log2 n/r3 ), for any r < nc (where c>0 is some constant). This is the first result showing that the number of rounds must blow up polynomially large as we approach the optimal factor of 1−1/e. For the unconstrained non-monotone maximization problem, we show a positive result: For every instance, and every δ>0, either we obtain a (1/2−δ)-approximation in 1 round, or a (1/2+Ω(δ2))-approximation in O(1/δ2) rounds. In particular (and in contrast to the cardinality-constrained case), there cannot be an instance where (i) it is impossible to achieve an approximation factor better than 1/2 regardless of the number of rounds, and (ii) it takes r rounds to achieve a factor of 1/2−O(1/r).

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at STOC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers