12/07/2020

Parallel Algorithm for Non-Monotone DR-Submodular Maximization

Alina Ene, Huy Nguyen

Keywords: Optimization - General

Abstract: In this work, we give a new parallel algorithm for the problem of maximizing a non-monotone diminishing returns submodular function subject to a cardinality constraint. For any desired accuracy $\epsilon$, our algorithm achieves a $1/e - \epsilon$ approximation using $O(\log{n} \log(1/\epsilon) / \epsilon^3)$ parallel rounds of function evaluations. The approximation guarantee nearly matches the best approximation guarantee known for the problem in the sequential setting and the number of parallel rounds is nearly-optimal for any constant $\epsilon$. Previous algorithms achieve worse approximation guarantees using $\Omega(\log^2{n})$ parallel rounds. Our experimental evaluation suggests that our algorithm obtains solutions whose objective value nearly matches the value obtained by the state of the art sequential algorithms, and it outperforms previous parallel algorithms in number of parallel rounds, iterations, and solution quality.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers