02/02/2021

Nearly Linear-Time, Parallelizable Algorithms for Non-Monotone Submodular Maximization

Alan Kuhnle

Keywords:

Abstract: We study combinatorial, parallelizable algorithms for maximization of a submodular function, not necessarily monotone, with respect to a cardinality constraint k. We improve the best approximation factor achieved by an algorithm that has optimal adaptivity and query complexity, up to logarithmic factors in the size of the ground set, from 0.039 to nearly 0.193. Heuristic versions of our algorithms are empirically validated to use a low number of adaptive rounds and total queries while obtaining solutions with high objective value in comparison with state-of-the-art approximation algorithms, including continuous algorithms that use the multilinear extension.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38949247
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers