06/12/2020

The All-or-Nothing Phenomenon in Sparse Tensor PCA

Jonathan Niles-Weed, Ilias Zadik

Keywords:

Abstract: We study the statistical problem of estimating a rank-one sparse tensor corrupted by additive gaussian noise, a Gaussian additive model also known as sparse tensor PCA. We show that for Bernoulli and Bernoulli-Rademacher distributed signals and \emph{for all} sparsity levels which are sublinear in the dimension of the signal, the sparse tensor PCA model exhibits a phase transition called the \emph{all-or-nothing phenomenon}. This is the property that for some signal-to-noise ratio (SNR) $\mathrm{SNR_c}$ and any fixed $\epsilon>0$, if the SNR of the model is below $\left(1-\epsilon\right)\mathrm{SNR_c}$, then it is impossible to achieve any arbitrarily small constant correlation with the hidden signal, while if the SNR is above $\left(1+\epsilon \right)\mathrm{SNR_c}$, then it is possible to achieve almost perfect correlation with the hidden signal. The all-or-nothing phenomenon was initially established in the context of sparse linear regression, and over the last year also in the context of sparse 2-tensor (matrix) PCA and Bernoulli group testing. Our results follow from a more general result showing that for any Gaussian additive model with a discrete uniform prior, the all-or-nothing phenomenon follows as a direct outcome of an appropriately defined ``near-orthogonality" property of the support of the prior distribution.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers