12/07/2020

Input-Sparsity Low Rank Approximation in Schatten Norm

Yi Li, David Woodruff

Keywords: Unsupervised and Semi-Supervised Learning

Abstract: We give the first input-sparsity time algorithms for the rank-$k$ low rank approximation problem in every Schatten norm. Specifically, for a given $n\times n$ matrix $A$, our algorithm computes $Y,Z\in \R^{n\times k}$, which, with high probability, satisfy $\|A-YZ^T\|_p \leq (1+\eps)\|A-A_k\|_p$, where $\|M\|_p = \left (\sum_{i=1}^n \sigma_i(M)^p \right )^{1/p}$ is the Schatten $p$-norm of a matrix $M$ with singular values $\sigma_1(M), \ldots, \sigma_n(M)$, and where $A_k$ is the best rank-$k$ approximation to $A$. Our algorithm runs in time $\tilde{O}(\nnz(A) + n^{\alpha_p}\poly(k/\eps))$, where $\alpha_p = 1$ for $p\in [1,2)$ and $\alpha_p = 1 + (\omega-1)(1-2/p)$ for $p>2$ and $\omega \approx 2.374$ is the exponent of matrix multiplication. For the important case of $p = 1$, which corresponds to the more ``robust'' nuclear norm, we obtain $\tilde{O}(\nnz(A) + n \cdot \poly(k/\epsilon))$ time, which was previously only known for the Frobenius norm $(p = 2)$. Moreover, since $\alpha_p < \omega$ for every $p$, our algorithm has a better dependence on $n$ than that in the singular value decomposition for every $p$. Crucial to our analysis is the use of dimensionality reduction for Ky-Fan $p$-norms.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers