18/07/2021

Finding k in Latent $k-$ polytope

Chiru Bhattacharyya, Ravindran Kannan, Amit Kumar

Keywords: Algorithms, Components Analysis (e.g., CCA, ICA, LDA, PCA)

Abstract: The recently introduced Latent $k-$ Polytope($\LkP$) encompasses several stochastic Mixed Membership models including Topic Models. The problem of finding $k$, the number of extreme points of $\LkP$, is a fundamental challenge and includes several important open problems such as determination of number of components in Ad-mixtures. This paper addresses this challenge by introducing Interpolative Convex Rank(\INR) of a matrix defined as the minimum number of its columns whose convex hull is within Hausdorff distance $\varepsilon$ of the convex hull of all columns. The first important contribution of this paper is to show that under \emph{standard assumptions} $k$ equals the \INR of a \emph{subset smoothed data matrix} defined from Data generated from an $\LkP$. The second important contribution of the paper is a polynomial time algorithm for finding $k$ under standard assumptions. An immediate corollary is the first polynomial time algorithm for finding the \emph{inner dimension} in Non-negative matrix factorisation(NMF) with assumptions which are qualitatively different than existing ones such as \emph{Separability}. %An immediate corollary is the first polynomial time algorithm for finding the \emph{inner dimension} in Non-negative matrix factorisation(NMF) with assumptions considerably weaker than \emph{Separability}.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers