12/07/2020

The Complexity of Finding Stationary Points with Stochastic Gradient Descent

Yoel Drori, Ohad Shamir

Keywords: Optimization - Non-convex

Abstract: We study the iteration complexity of stochastic gradient descent (SGD) for minimizing the gradient norm of smooth, possibly nonconvex functions. We provide several results, implying that the classical $\mathcal{O}(\epsilon^{-4})$ upper bound (for making the average gradient norm less than $\epsilon$) cannot be improved upon, unless a combination of additional assumptions is made. Notably, this holds even if we limit ourselves to convex quadratic functions. We also show that for nonconvex functions, the feasibility of minimizing gradients with SGD is surprisingly sensitive to the choice of optimality criteria.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers