18/07/2021

Dimensionality Reduction for the Sum-of-Distances Metric

Zhili Feng, Praneeth Kacham, David Woodruff

Keywords: Neuroscience and Cognitive Science, Deep Learning, Biologically Plausible Deep Networks; Neuroscience and Cognitive Science, Connectomics; Neuroscience and Cog, Algorithms, Dimensionality Reduction

Abstract: We give a dimensionality reduction procedure to approximate the sum of distances of a given set of $n$ points in $R^d$ to any ``shape'' that lies in a $k$-dimensional subspace. Here, by ``shape'' we mean any set of points in $R^d$. Our algorithm takes an input in the form of an $n \times d$ matrix $A$, where each row of $A$ denotes a data point, and outputs a subspace $P$ of dimension $O(k^{3}/\epsilon^6)$ such that the projections of each of the $n$ points onto the subspace $P$ and the distances of each of the points to the subspace $P$ are sufficient to obtain an $\epsilon$-approximation to the sum of distances to any arbitrary shape that lies in a $k$-dimensional subspace of $R^d$. These include important problems such as $k$-median, $k$-subspace approximation, and $(j,l)$ subspace clustering with $j \cdot l \leq k$. Dimensionality reduction reduces the data storage requirement to $(n+d)k^{3}/\epsilon^6$ from nnz$(A)$. Here nnz$(A)$ could potentially be as large as $nd$. Our algorithm runs in time nnz$(A)/\epsilon^2 + (n+d)$poly$(k/\epsilon)$, up to logarithmic factors. For dense matrices, where nnz$(A) \approx nd$, we give a faster algorithm, that runs in time $nd + (n+d)$poly$(k/\epsilon)$ up to logarithmic factors. Our dimensionality reduction algorithm can also be used to obtain poly$(k/\epsilon)$ size coresets for $k$-median and $(k,1)$-subspace approximation problems in polynomial time.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers