02/02/2021

Approximate Multiplication of Sparse Matrices with Limited Space

Yuanyu Wan, Lijun Zhang

Keywords:

Abstract: Approximate matrix multiplication with limited space has received ever-increasing attention due to the emergence of large-scale applications. Recently, based on a popular matrix sketching algorithm---frequent directions, previous work has introduced co-occuring directions (COD) to reduce the approximation error for this problem. Although it enjoys the space complexity of O((m_x+m_y)l) for two input matrices X∈ℝ^{m_x ╳ n} and Y∈ℝ^{m_y ╳ n} where l is the sketch size, its time complexity is O(n(m_x+m_y+l)l), which is still very high for large input matrices. In this paper, we propose to reduce the time complexity by exploiting the sparsity of the input matrices. The key idea is to employ an approximate singular value decomposition (SVD) method which can utilize the sparsity, to reduce the number of QR decompositions required by COD. In this way, we develop sparse co-occuring directions, which reduces the time complexity to Õ((nnz(X)+nnz(Y))l+nl^2) in expectation while keeps the same space complexity as O((m_x+m_y)l), where nnz(X) denotes the number of non-zero entries in X and the Õ notation hides constant factors as well as polylogarithmic factors. Theoretical analysis reveals that the approximation error of our algorithm is almost the same as that of COD. Furthermore, we empirically verify the efficiency and effectiveness of our algorithm.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948572
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers