06/12/2021

Unique sparse decomposition of low rank matrices

Dian Jin, Xin Bing, Yuqian Zhang

Keywords: optimization, self-supervised learning

Abstract: The problem of finding the unique low dimensional decomposition of a given matrix has been a fundamental and recurrent problem in many areas. In this paper, we study the problem of seeking a unique decomposition of a low-rank matrix $Y\in \mathbb{R}^{p\times n}$ that admits a sparse representation. Specifically, we consider $ Y = AX\in \mathbb{R}^{p\times n}$ where the matrix $A\in \mathbb{R}^{p\times r}$ has full column rank, with $r < \min\{n,p\}$, and the matrix $X\in \mathbb{R}^{r\times n}$ is element-wise sparse. We prove that this sparse decomposition of $Y$ can be uniquely identified by recovering ground-truth $A$ column by column, up to some intrinsic signed permutation. Our approach relies on solving a nonconvex optimization problem constrained over the unit sphere. Our geometric analysis for the nonconvex optimization landscape shows that any {\em strict} local solution is close to the ground truth solution, and can be recovered by a simple data-driven initialization followed with any second-order descent algorithm. At last, we corroborate these theoretical results with numerical experiments

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers