06/12/2021

Generalization Bounds for (Wasserstein) Robust Optimization

Yang An, Rui Gao

Keywords: optimization, machine learning, robustness

Abstract: (Distributionally) robust optimization has gained momentum in machine learning community recently, due to its promising applications in developing generalizable learning paradigms. In this paper, we derive generalization bounds for robust optimization and Wasserstein robust optimization for Lipschitz and piecewise Hölder smooth loss functions under both stochastic and adversarial setting, assuming that the underlying data distribution satisfies transportation-information inequalities. The proofs are built on new generalization bounds for variation regularization (such as Lipschitz or gradient regularization) and its connection with robustness.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers