12/07/2020

An Accelerated DFO Algorithm for Finite-sum Convex Functions

Yuwen Chen, Antonio Orvieto, Aurelien Lucchi

Keywords: Optimization - Convex

Abstract: Derivative-free optimization (DFO) has recently gained a lot of momentum in machine learning, spawning interest in the community to design faster methods for problems where gradients are not accessible. While some attention has been given to the concept of acceleration in the DFO literature, there exists no algorithm with a provably accelerated rate of convergence for objective functions with a finite-sum structure. Stochastic algorithms that use acceleration in such a setting are prone to instabilities, making it difficult to reach convergence. In this work, we exploit the finite-sum structure of the objective to design a variance-reduced DFO algorithm that probably yields an accelerated rate of convergence. We prove rates of convergence for both smooth convex and strongly-convex finite-sum objective functions. Finally, we validate our theoretical results empirically on several datasets.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers