06/12/2021

NTopo: Mesh-free Topology Optimization using Implicit Neural Representations

Jonas Zehnder, Yue Li, Stelian Coros, Bernhard Thomaszewski

Keywords: deep learning, optimization, machine learning, self-supervised learning, representation learning

Abstract: Recent advances in implicit neural representations show great promise when it comes to generating numerical solutions to partial differential equations. Compared to conventional alternatives, such representations employ parameterized neural networks to define, in a mesh-free manner, signals that are highly-detailed, continuous, and fully differentiable. In this work, we present a novel machine learning approach for topology optimization---an important class of inverse problems with high-dimensional parameter spaces and highly nonlinear objective landscapes. To effectively leverage neural representations in the context of mesh-free topology optimization, we use multilayer perceptrons to parameterize both density and displacement fields. Our experiments indicate that our method is highly competitive for minimizing structural compliance objectives, and it enables self-supervised learning of continuous solution spaces for topology optimization problems.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers