14/06/2020

Learning to Optimize on SPD Manifolds

Zhi Gao, Yuwei Wu, Yunde Jia, Mehrtash Harandi

Keywords: riemannian optimization, symmetric positive definite (spd) manifolds, optimization-based meta-learning, automatical spd optimizer design, learning to optimize, gradiend-based spd optimization, optimization problems with spd constraints

Abstract: Many tasks in computer vision and machine learning are modeled as optimization problems with constraints in the form of Symmetric Positive Definite (SPD) matrices. Solving such optimization problems is challenging due to the non-linearity of the SPD manifold, making optimization with SPD constraints heavily relying on expert knowledge and human involvement. In this paper, we propose a meta-learning method to automatically learn an iterative optimizer on SPD manifolds. Specifically, we introduce a novel recurrent model that takes into account the structure of input gradients and identifies the updating scheme of optimization. We parameterize the optimizer by the recurrent model and utilize Riemannian operations to ensure that our method is faithful to the geometry of SPD manifolds. Compared with existing SPD optimizers, our optimizer effectively exploits the underlying data distribution and learns a better optimization trajectory in a data-driven manner. Extensive experiments on various computer vision tasks including metric nearness, clustering, and similarity learning demonstrate that our optimizer outperforms existing state-of-the-art methods consistently.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers