26/04/2020

Meta-Learning Acquisition Functions for Transfer Learning in Bayesian Optimization

Michael Volpp, Lukas P. Fröhlich, Kirsten Fischer, Andreas Doerr, Stefan Falkner, Frank Hutter, Christian Daniel

Keywords: Transfer Learning, Meta Learning, Bayesian Optimization, Reinforcement Learning

Abstract: Transferring knowledge across tasks to improve data-efficiency is one of the open key challenges in the field of global black-box optimization. Readily available algorithms are typically designed to be universal optimizers and, therefore, often suboptimal for specific tasks. We propose a novel transfer learning method to obtain customized optimizers within the well-established framework of Bayesian optimization, allowing our algorithm to utilize the proven generalization capabilities of Gaussian processes. Using reinforcement learning to meta-train an acquisition function (AF) on a set of related tasks, the proposed method learns to extract implicit structural information and to exploit it for improved data-efficiency. We present experiments on a simulation-to-real transfer task as well as on several synthetic functions and on two hyperparameter search problems. The results show that our algorithm (1) automatically identifies structural properties of objective functions from available source tasks or simulations, (2) performs favourably in settings with both scarse and abundant source data, and (3) falls back to the performance level of general AFs if no particular structure is present.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers