06/12/2020

Differentiable Expected Hypervolume Improvement for Parallel Multi-Objective Bayesian Optimization

Sam Daulton, Max Balandat, Eytan Bakshy

Keywords:

Abstract: In many real-world scenarios, decision makers seek to efficiently optimize multiple competing objectives in a sample-efficient fashion. Multi-objective Bayesian optimization (BO) is a common approach, but many of the best-performing acquisition functions do not have known analytic gradients and suffer from high computational overhead. We leverage recent advances in programming models and hardware acceleration for multi-objective BO using Expected Hypervolume Improvement (EHVI)---an algorithm notorious for its high computational complexity. We derive a novel formulation of q-Expected Hypervolume Improvement (qEHVI), an acquisition function that extends EHVI to the parallel, constrained evaluation setting. qEHVI is an exact computation of the joint EHVI of q new candidate points (up to Monte-Carlo (MC) integration error). Whereas previous EHVI formulations rely on gradient-free acquisition optimization or approximated gradients, we compute exact gradients of the MC estimator via auto-differentiation, thereby enabling efficient and effective optimization using first-order and quasi-second-order methods. Our empirical evaluation demonstrates that qEHVI is computationally tractable in many practical scenarios and outperforms state-of-the-art multi-objective BO algorithms at a fraction of their wall time.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers