12/07/2020

Multi-Task Learning with User Preferences: Gradient Descent with Controlled Ascent in Pareto Optimization

Debabrata Mahapatra, Vaibhav Rajan

Keywords: Transfer, Multitask and Meta-learning

Abstract: Multi-Task Learning (MTL) is a well established learning paradigm for jointly learning models for multiple correlated tasks. Often the tasks conflict requiring trade-offs between them during optimization. Recent advances in multi-objective optimization based MTL have enabled us to use large-scale deep networks to find one or more Pareto optimal solutions. However, they cannot be used to find exact Pareto optimal solutions satisfying user-specified preferences with respect to task-specific losses, that is not only a common requirement in applications but also a useful way to explore the infinite set of Pareto optimal solutions. We develop the first gradient-based multi-objective MTL algorithm to address this problem. Our unique approach combines multiple gradient descent with carefully controlled ascent, that enables it to trace the Pareto front in a principled manner and makes it robust to initialization. Assuming only differentiability of the task-specific loss functions, we provide theoretical guarantees for convergence. We empirically demonstrate the superiority of our algorithm over state-of-the-art methods.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers