02/02/2021

Progression Heuristics for Planning with Probabilistic LTL Constraints

Ian Mallett, Sylvie Thiebaux, Felipe Trevizan

Keywords:

Abstract: Probabilistic planning subject to multi-objective probabilistic temporal logic (PLTL) constraints models the problem of computing safe and robust behaviours for agents in stochastic environments. We present novel admissible heuristics to guide the search for cost-optimal policies for these problems. These heuristics project and decompose LTL formulae obtained by progression to estimate the probability that an extension of a partial policy satisfies the constraints. Their computation with linear programming is integrated with the recent PLTL-dual heuristic search algorithm, enabling more aggressive pruning of regions violating the constraints. Our experiments show that they further widen the scalability gap between heuristic search and verification approaches to these planning problems.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948504
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers