06/12/2020

Towards a Combinatorial Characterization of Bounded-Memory Learning

Alon Gonen, Shachar Lovett, Michal Moshkovitz

Keywords:

Abstract: Combinatorial dimensions play an important role in the theory of machine learning. For example, VC dimension characterizes PAC learning, SQ dimension characterizes weak learning with statistical queries, and Littlestone dimension characterizes online learning. In this paper we aim to develop combinatorial dimensions that characterize bounded memory learning. We propose a candidate solution for the case of realizable strong learning under a known distribution, based on the SQ dimension of neighboring distributions. We prove both upper and lower bounds for our candidate solution, that match in some regime of parameters. This is the first characterization of strong learning under space constraints in any regime. In this parameter regime there is an equivalence between bounded memory and SQ learning. We conjecture that our characterization holds in a much wider regime of parameters.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers