26/08/2020

Uncertainty Quantification for Sparse Deep Learning

Yuexi Wang, Veronika Rockova

Keywords:

Abstract: Deep learning methods continue to have a decided impact on machine learning, both in theory and in practice. Statistical theoretical developments have been mostly concerned with approximability or rates of estimation when recovering infinite dimensional objects (curves or densities). Despite the impressive array of available theoretical results, the literature has been largely silent about uncertainty quantification for deep learning. This paper takes a step forward in this important direction by taking a Bayesian point of view. We study Gaussian approximability of certain aspects of posterior distributions of sparse deep ReLU architectures in non-parametric regression. Building on tools from Bayesian non-parametrics, we provide semi-parametric Bernstein-von Mises theorems for linear and quadratic functionals, which guarantee that implied Bayesian credible regions have valid frequentist coverage. Our results provide new theoretical justifications for (Bayesian) deep learning with ReLU activation functions, highlighting their inferential potential.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers