22/11/2021

Noisy Annotation Refinement for Object Detection

Jiafeng Mao, Qing Yu, Yoko Yamakata, Kiyoharu Aizawa

Keywords: noise-resistant object detection, robust learning, annotation refinement

Abstract: Supervised training of object detectors requires well-annotated large-scale datasets, whose production is costly. Therefore, some efforts have been made to obtain annotations in economical ways, such as cloud sourcing. However, datasets obtained by these methods tend to contain noisy annotations such as inaccurate bounding boxes and incorrect class labels. In this study, we propose a new problem setting of training object detectors on datasets with entangled noises of annotations of class labels and bounding boxes. Our proposed method efficiently decouples the entangled noises, corrects the noisy annotations, and subsequently trains the detector using the corrected annotations. We verified the effectiveness of our proposed method and compared it with the baseline on noisy datasets with different noise levels. The experimental results show that our proposed method significantly outperforms the baseline.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers