02/02/2021

Hierarchical Information Passing Based Noise-Tolerant Hybrid Learning for Semi-Supervised Human Parsing

Yunan Liu, Shanshan Zhang, Jian Yang, PongChi Yuen

Keywords:

Abstract: Deep learning based human parsing methods usually require a large amount of training data to reach high performance. However, it is costly and time-consuming to obtain manually annotated high quality labels for a large scale dataset. To alleviate annotation efforts, we propose a new semi-supervised human parsing method for which we only need a small number of labels for training. First, we generate high quality pseudo labels on unlabeled images using a hierarchical information passing network (HIPN), which reasons human part segmentation in a coarse to fine manner. Furthermore, we develop a noise-tolerant hybrid learning method, which takes advantage of positive and negative learning to better handle noisy pseudo labels. When evaluated on standard human parsing benchmarks, our HIPN achieves a new state-of-the-art performance. Moreover, our noise-tolerant hybrid learning method further improves the performance and outperforms the state-of-the-art semi-supervised method (i.e. GRN) by 4.47 points w.r.t mIoU on the LIP dataset.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948217
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers