26/04/2020

Meta Dropout: Learning to Perturb Latent Features for Generalization

Hae Beom Lee, Taewook Nam, Eunho Yang, Sung Ju Hwang

Keywords:

Abstract: A machine learning model that generalizes well should obtain low errors on unseen test examples. Thus, if we know how to optimally perturb training examples to account for test examples, we may achieve better generalization performance. However, obtaining such perturbation is not possible in standard machine learning frameworks as the distribution of the test data is unknown. To tackle this challenge, we propose a novel regularization method, meta-dropout, which learns to perturb the latent features of training examples for generalization in a meta-learning framework. Specifically, we meta-learn a noise generator which outputs a multiplicative noise distribution for latent features, to obtain low errors on the test instances in an input-dependent manner. Then, the learned noise generator can perturb the training examples of unseen tasks at the meta-test time for improved generalization. We validate our method on few-shot classification datasets, whose results show that it significantly improves the generalization performance of the base model, and largely outperforms existing regularization methods such as information bottleneck, manifold mixup, and information dropout.

 0
 1
 1
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers