06/12/2020

Consistency Regularization for Certified Robustness of Smoothed Classifiers

Jongheon Jeong, Jinwoo Shin

Keywords:

Abstract: A recent technique of randomized smoothing has shown that the worst-case (adversarial) l2-robustness can be transformed into the average-case Gaussian-robustness by "smoothing" a classifier, i.e., by considering the averaged prediction over Gaussian noise. In this paradigm, one should rethink the notion of adversarial robustness in terms of generalization ability of a classifier under noisy observations. We found that the trade-off between accuracy and certified robustness of smoothed classifiers can be greatly controlled by simply regularizing the prediction consistency over noise. This relationship allows us to design a robust training objective without approximating a non-existing smoothed classifier, e.g., via soft smoothing. Our experiments under various deep neural network architectures and datasets show that the "certified" l2-robustness can be dramatically improved with the proposed regularization, even achieving better or comparable results to the state-of-the-art approaches with significantly less training costs and hyperparameters.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers