14/06/2020

Feature-Metric Registration: A Fast Semi-Supervised Approach for Robust Point Cloud Registration Without Correspondences

Xiaoshui Huang, Guofeng Mei, Jian Zhang

Keywords: point cloud, registration, semi-supervised, unsupervised, deep learning, correspondence, feature-metric, cross source

Abstract: We present a fast feature-metric point cloud registration framework, which enforces the optimisation of registration by minimising a feature-metric projection error without correspondences. The advantage of the feature-metric projection error is robust to noise, outliers and density difference in contrast to the geometric projection error. Besides, minimising the feature-metric projection error does not need to search the correspondences so that the optimisation speed is fast. The principle behind the proposed method is that the feature difference is smallest if point clouds are aligned very well. We train the proposed method in a semi-supervised or unsupervised approach, which requires limited or no registration label data. Experiments demonstrate our method obtains higher accuracy and robustness than the state-of-the-art methods. Besides, experimental results show that the proposed method can handle significant noise and density difference, and solve both same-source and cross-source point cloud registration.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers