13/04/2021

Critical parameters for scalable distributed learning with large batches and asynchronous updates

Sebastian Stich, Amirkeivan Mohtashami, Martin Jaggi

Keywords:

Abstract: It has been experimentally observed that the efficiency of distributed training with stochastic gradient (SGD) depends decisively on the batch size and—in asynchronous implementations—on the gradient staleness. Especially, it has been observed that the speedup saturates beyond a certain batch size and/or when the delays grow too large. We identify a data-dependent parameter that explains the speedup saturation in both these settings. Our comprehensive theoretical analysis, for strongly convex, convex and non-convex settings, unifies and generalized prior work directions that often focused on only one of these two aspects. In particular, our approach allows us to derive improved speedup results under frequently considered sparsity assumptions. Our insights give rise to theoretically based guidelines on how the learning rates can be adjusted in practice. We show that our results are tight and illustrate key findings in numerical experiments.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers