02/02/2021

Rejection Sampling for Weighted Jaccard Similarity Revisited

Xiaoyun Li, Ping Li

Keywords:

Abstract: Efficiently computing the weighted Jaccard similarity has become an active research topic in machine learning and theory. For sparse data, the standard technique is based on the consistent weighed sampling (CWS). For dense data, however, methods based on rejection sampling (RS) can be much more efficient. Nevertheless, existing RS methods are still slow for practical purposes. In this paper, we propose to improve RS by a strategy, which we call efficient rejection sampling (ERS), based on ``early stopping + densification''. We analyze the statistical property of ERS and provide experimental results to compare ERS with RS and other algorithms for hashing weighted Jaccard. The results demonstrate that ERS significantly improves the existing methods for estimating the weighted Jaccard similarity in relatively dense data.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38949128
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers