06/12/2021

Stochastic Online Linear Regression: the Forward Algorithm to Replace Ridge

Reda Ouhamma, Odalric-Ambrym Maillard, Vianney Perchet

Keywords: robustness, bandits

Abstract: We consider the problem of online linear regression in the stochastic setting. We derive high probability regret bounds for online $\textit{ridge}$ regression and the $\textit{forward}$ algorithm. This enables us to compare online regression algorithms more accurately and eliminate assumptions of bounded observations and predictions. Our study advocates for the use of the forward algorithm in lieu of ridge due to its enhanced bounds and robustness to the regularization parameter. Moreover, we explain how to integrate it in algorithms involving linear function approximation to remove a boundedness assumption without deteriorating theoretical bounds. We showcase this modification in linear bandit settings where it yields improved regret bounds. Last, we provide numerical experiments to illustrate our results and endorse our intuitions.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers