02/02/2021

Hybrid-order Stochastic Block Model

Xunxun Wu, Chang-Dong Wang, Pengfei Jiao

Keywords:

Abstract: Community detection is a research hotspot in machine learning and data mining. However, most of the existing community detection methods only rely on the lower-order connectivity patterns, while ignoring the higher-order connectivity patterns, and unable to capture the building blocks of the complex network. In recent years, some community detection methods based on higher-order structures have been developed, but they mainly focus on the motif network composed of higher-order structures, which violate the original lower-order topological structure and are affected by the fragmentation issue, resulting in the deviation of community detection results. Therefore, there is still a lack of community detection methods that can effectively utilize higher-order connectivity patterns and lower-order connectivity patterns. To overcome the above limitations, this paper proposes the Hybrid-order Stochastic Block Model (HSBM) from the perspective of the generative model. Based on the classical stochastic block model, the generation of lower-order structure and higher-order structure of the network is modeled uniformly, and the original topological properties of the network are maintained while using higher-order connectivity patterns. At the same time, a heuristic algorithm for community detection is proposed to optimize the objective function. Extensive experiments on six real-world datasets show that the proposed method outperforms the existing approaches.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38949044
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers