14/06/2020

Generalized Zero-Shot Learning via Over-Complete Distribution

Rohit Keshari, Richa Singh, Mayank Vatsa

Keywords: deep learning, zero-shot leaning, cvae, triplet loss, center loss

Abstract: A well trained and generalized deep neural network (DNN) should be robust to both seen and unseen classes. However, the performance of most of the existing supervised DNN algorithms degrade for classes which are unseen in the training set. To learn a discriminative classifier which yields good performance in Zero-Shot Learning (ZSL) settings, we propose to generate an Over-Complete Distribution (OCD) using Conditional Variational Autoencoder (CVAE) of both seen and unseen classes. In order to enforce the separability between classes and reduce the class scatter, we propose the use of Online Batch Triplet Loss (OBTL) and Center Loss (CL) on the generated OCD. The effectiveness of the framework is evaluated using both Zero-Shot Learning and Generalized Zero-Shot Learning protocols on three publicly available benchmark databases, SUN, CUB and AWA2. The results show that generating over-complete distributions and enforcing the classifier to learn a transform function from overlapping to non-overlapping distributions can improve the performance on both seen and unseen classes.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers