02/02/2021

Nearest Neighbor Classifier Embedded Network for Active Learning

Fang Wan, Tianning Yuan, Mengying Fu, Xiangyang Ji, Qingming Huang, Qixiang Ye

Keywords:

Abstract: Deep neural networks (DNNs) have been widely applied to active learning. Despite of its effectiveness, the generalization ability of the discriminative classifier (the softmax classifier) is questionable when there is a significant distribution bias between the labeled set and the unlabeled set. In this paper, we attempt to replace the softmax classifier in deep neural network with a nearest neighbor classifier, considering its progressive generalization ability within the unknown sub-space. Our proposed active learning approach, termed nearest Neighbor Classifier Embedded network (NCE-Net), targets at reducing the risk of over-estimating unlabeled samples while improving the opportunity to query informative samples. NCE-Net is conceptually simple but surprisingly powerful, as justified from the perspective of the subset information, which defines a metric to quantify model generalization ability in active learning. Experimental results show that, with simple selection based on rejection or confusion confidence, NCE-Net improves state-of-the-arts on image classification and object detection tasks with significant margins.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38947719
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers