02/02/2021

Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning

Geonmo Gu, Byungsoo Ko, Han-Gyu Kim

Keywords:

Abstract: One of the main purposes of deep metric learning is to construct an embedding space that has well-generalized embeddings on both seen (training) classes and unseen (test) classes. Most existing works have tried to achieve this using different types of metric objectives and hard sample mining strategies with given training data. However, learning with only the training data can be overfitted to the seen classes, leading to the lack of generalization capability on unseen classes. To address this problem, we propose a simple regularizer called Proxy Synthesis that exploits synthetic classes for stronger generalization in deep metric learning. The proposed method generates synthetic embeddings and proxies that work as synthetic classes, and they mimic unseen classes when computing proxy-based losses. Proxy Synthesis derives an embedding space considering class relations and smooth decision boundaries for robustness on unseen classes. Our method is applicable to any proxy-based losses, including softmax and its variants. Extensive experiments on four famous benchmarks in image retrieval tasks demonstrate that Proxy Synthesis significantly boosts the performance of proxy-based losses and achieves state-of-the-art performance. Our implementation is available at github.com/navervision/proxy-synthesis.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38947943
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers